Минеральные элементы	Современные европейские сорта			Черкесские (адыгские) сорта	
	Айдаред	Флорина	Интер-прайс	Миешхатам	Черкесский розмарин (Агуемий)
Калий	104	78	92	112	102
Натрий	11,0	8,6	8,9	12,3	9,4
Кальций	9,1	8,0	6,9	8,4	8,0
Магний	5,8	6,0	5,3	7,3	6,8
Железо	2,3	3,4	1,8	2,1	0,8

Минеральный состав сока яблок исследуемых сортов, мг/100 г

Микроэлементы содержатся в организме и продуктах в очень малых количествах, выражаемых десятками и даже сотыми, тысячными долями миллиграммов. В настоящее время 14 микроэлементов признаны необходимыми для жизнедеятельности: железо, медь, марганец, цинк, кобальт, йод, фтор, хром, молибден, ванадий, никель, стронций, кремний, селен.

Значение минеральных веществ многообразно. Можно выделить их роль в построении тканей организма, особенно костей. Элементы участвуют в регуляции кислотно-основного состояния организма. Нормальная функция нервной, сердечно-сосудистой, пищеварительной и других систем невозможна без минеральных веществ. Минеральные вещества влияют на защитные функции организма, его иммунитет. Процессы кроветворения и свертывания крови не могут происходить без участия железа, меди, кальция и других минеральных элементов. Минеральные вещества, особенно микроэлементы, входят в состав или активируют действие ферментов, гормонов, витаминов и таким образом участвуют во всех видах обмена веществ. Они являются незаменимой составной частью пищи, а их длительный недостаток или избыток в питании ведет к нарушениям обмена веществ и даже заболеваниям.

Целью наших исследований было изучение элементного состава староадыгских сортов яблок, произрастающих в Адыгее и на Черноморском побережье.

В результате проведённых исследований нами были отобраны староадыгские (Агуемий и Миешхатам) и современные европейские (Айдаред, Флорина, Интерпрайс) сорта яблок. Образцы адыгских сортов выращены в естественных условиях (Агуемий – пос. Новомихайловский, Туапсинского района, а Миешхатам – а. Псебе, Туапсинского района, Краснодарского края).

Минеральный состав определяли с помощью атомно-абсорбционной спектрометрии (ГОСТ Р 51429-99). Метод основан на определении натрия, калия, кальция и магния с помощью атомно-абсорбционной спектрометрии в разведенной пробе, в которую для предотвращения частичной ионизации металлов в пламени при определении натрия и калия с целью видоизменения матрицы добавлен хлорид цезия, а при определении кальция и магния – лантан. Повторность определения – десятикратная, с предварительной минерализацией образцов.

Результаты исследования представлены в таблице. Таким образом, сравнительное изучение элементного состава староадыгских сортов яблок, произрастающих в естественных условиях Адыгеи и Краснодарского края, позволило получить информацию по 5 элементам, преобладающим из которых является калий, а так же натрий, кальций, магний и железо. Полученные результаты показали, что по содержанию калия, натрия и железа исследуемые образцы адыгских сортов яблок превосходят современные европейские сорта. Плоды староадыгских сортов яблонь,

выращенных в естественных условиях, аккумулируют большое количество кальция и железа, содержание которых практически одинаково во всех образцах. Эти элементы являются жизненно необходимыми для нормального функционирования человеческого организма.

Список литературы

1. Колотий Т.Б., Стальная М.И. Полиморфизм яблони кавказской в предгорных лесах Республики Адыгея // Научные и технологические подходы в развитии аграрной науки: материалы III Межд. научно-практ. конф. молодых учёных. — Том II. — М.: Изд-во «Вестник Российской академии с.-х. наук», 2014. — С. 12-14.

ОРГАНИЗАЦИЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ПЕРВИЧНОЙ ПЕРЕРАБОТКИ МЯСНОГО СЫРЬЯ (НА ПРИМЕРЕ ООО «СПК «УРАЛ-ТАУ»)

Хафизова М.И., Седых Т.А.

Башкирский государственный аграрный университет, Уфа, e-mail: milya.xafizova.94@mail.ru

Значительная доля в производстве мясного сырья в Башкортостане приходится на сельскохозяйственные предприятия, которые реализуют свою продукцию через торговую сеть [1,3,4]. В связи с этим целью наших исследований стало изучение организации технологического процесса первичной переработки мясного сырья в условиях стабильно развивающегося сельскохозяйственного предприятия Северо-востока Республики Башкортостан, на примере ООО «Сельскохозяйственное предприятие «Урал-тау» Дуванского района.

ООО «СПК «Урал-тау» – один из крупнейших и наиболее эффективных производителей сельскохозяйственной продукции в республике, располагающий собственной развитой растениеводческой (11500 га сельхозугодий) и животноводческой инфраструктурой. На предприятии успешно функционируют: свиноводческий комплекс на 5000 голов свиней, молочнотоварные фермы с общим поголовьем крупного рогатого скота – 1856 голов (370 голов дойного стада), коневодческая ферма (399 голов), мини-пекарня хлебопродуктов, собственная торговая сеть магазинов "Колосок" (торговые точки в Малоязе, Большеустьикинске, Новобелокатае, Кигах), хлебоприемный пункт с вместимостью 24 тысяч тонн зерна. Осуществляется строительство мясоперерабатывающего комбината с предполагаемым выпуском основной номенклатуры продукции около 500 тонн в год, где на современном оборудовании предполагается выпускать 2 тонны готовой продукции в смену: колбасные изделия, замороженные полуфабрикаты, мясные деликатесы, вторичные продукты убоя, мясные консервы и мясокостную муку. В настоящее время на территории Северо-востока республики действуют несколько убойных пунктов, мощность которых, учитывая потребности населения, недостаточна и эта ситуация в некотором роде сдерживает рост поголовья животных.

ООО «СПК «Урал-тау» имеет собственное производство по переработке мяса. Мощность убойного цеха составляет до 2 тонн/смену, цех оснащен линиями для убоя и разделки туш крупного и мелкого скота (БО3-20\Pi-TX).

Убойный цех имеет различное технологическое оборудование: весы, бокс оглушения, электрошоковое устройство для крупного рогатого скота, вешала, площадку подъёмно-опускную, шкуросъёмное устройство, столы технологические, пилы для распиловки на полутуши, подвесной путь с кронштейнами, разногу, мойку со стерилизатором и др. Режим работы убойного цеха регламентирует технологическую последовательность, порядок выполнения операций и технологические режимы в цехе с соблюдением Правил ветеринарного осмотра убойных животных и ветеринарно-санитарной экспертизы мяса и мясных продуктов, Санитарных правил для предприятий мясной промышленности и Инструкции по мойке и профилактической дезинфекции на предприятиях мясной и птицеперерабатывающей промышленности.

Убойный цех проводит технологическую переработку крупного рогатого скота по схеме: подача скота на переработку; подъём животных на путь обескровливания; обескровливание; забеловка и съём шкуры; извлечение из туш внутренних органов; зачистка туш; ветеринарно-санитарная экспертиза туш и органов (на соответствующих участках); клеймение; навешивание на рамы; взвешивание; передача туш на холодильник.

Технологический процесс убоя начинается с предубойной подготовки животных путём 24-часовой выдержки их в загонах (животных не кормят, но дачу воды не ограничивают). Это даёт возможность отдохнуть животному после транспортировки и одновременно обеспечивает удаление из организма продуктов обмена, отрицательно влияющих на качество мяса [2.5.7].

Перед убоем отобранный скот поступает в коридор для прогона животных. КРС из предубойной бухты подают на участок забоя в бокс для оглушения. Оглушение проводят путем однократного наложения электростека на затылочную часть головы с прокалыванием шкуры на глубину не более 5 мм. (электрооглушение переменным током напряжением до 200 В при силе тока до 1,5 A).

Второй технологической операцией при убое животных является обескровливание животных, которая выполняется сразу же после их оглушения. После обескровливания животных приступают к обработке туш, включая такие технические операции, как съемка шкуры, отделение конечностей, нутровку и распиловку. В зависимости от вида животного и возраста технология обработки туш имеет некоторые особенности [6,7]. Обработку туш КРС начинают со снятия шкуры с головы.

Забеловка — частичная съемка шкуры (после разреза ее по белой линии живота) с задних и передних конечностей, в области предплечья, шеи, вымени или мошонки, пахов, бедер и частично хвоста.

Внутренние органы удаляют не позднее чем через 45 мин после обескровливания туши, так как кишечник животного содержит огромное количество разнообразной микрофлоры, быстро распространяющейся в окружающие ткани, несоблюдение этих требований может повлиять в дальнейшем на качество мяса [6]. Несвоевременное извлечение внутренних органов ведёт к распаду тканей и накоплению ядовитых продуктов [6,8]. Перед извлечением внутренних органов из туш крупного рогатого скота, разрубают грудную кость по средней линии, не допуская повреждения

желудочно-кишечного тракта. Для извлечения внутренних органов разрезают брюшную стенку по белой линии живота, не допуская порезов и повреждений желудка и кишечника.

Разделение туш на полутуши. Для удобства выполнения этой операции делают растяжку задних конечностей туш на подвесные пути с помощью электропилы разделяют тушу на две половины. После указанной операции производят зачистку туш. После зачистки щеткой-душем полутуши промывают с внутренней стороны теплой водой для удаления остатков и сгустков крови.

По окончании ветеринарно-санитарной экспертизы туши и органов на соответствующих участках осмотра, полутуши направляют на клеймение и взвешивание. Полутуши клеймят в соответствии с инструкцией по клеймению мяса, утвержденной в установленном порядке. После клеймения полутуши направляют на взвешивание.

Таким образом, организация технологического процесса первичной переработки мясного сырья в условиях ООО «СПК «Урал-тау» осуществляется по традиционной схеме в полном соответствии с действующими ветеринарно-санитарными правилами. Создание собственного крупного мясоперерабатывающего комплекса позволит поддержать производителей товарного мяса, в плане увеличения поголовья пично-подсобных хозяйствах и решить проблемы с реализацией своей продукции, что, несомненно, будет способствовать развитию импортозамещения на рынке сельхозпродукции в республике.

Список литературы

- 1. Gizatullin R.S. Condition and prospects of development meat Cattle breedings in Republic Bashkortostan / R.S. Gizatullin, T.A. Sedykh // Science, Technology and Higher Education: materials of the international research and practice conference, Westwood, Canada, December, 11.12.2012. Westwood, Canada, 2012. P. 496-499.
- 2. Гизатуллин Р.С. Производство экологически безопасного мясного сырья / Р.С. Гизатуллин, Т.А. Седых // Strategiczne pytania swiatowej nauki 2013: мaterialy IX Miedzynarodowej naukowi-praktycznej konferencji, 2013. С. 62-65.
- 3. Гизатуллин Р.С. Резервы увеличения производства говядины в Башкортостане / Р.С. Гизатуллин, Т.А. Седых // Вестник Башкирского государственного университета. 2011. $N\!\!\!\cdot\!\! 2.$ C. 25-29.
- 4. Организация производства говядины при различных технологиях содержания мясного скота / Р.С. Гизатуллин, Ф.С. Хазиахметов, Т.А. Седых, Р.М. Мударисов, Р.Г. Халиуллин. Уфа: Башкирский ГАУ, 2014. 39 с.
- 5. Ресурсосберегающая технология разведения мясного скота и производства говядины: рекомендации / Р.С. Гизатуллин, Ф.С. Хазиахметов, Т.А. Седых, Р.М. Мударисов, Р.Г. Халиуллин. Уфа: Башкирский ГАУ, 2013. 64 с.
- 6. Седых Т.А. Эффективность различных технологий содержания мясного скота и производства говядины // Известия Международной академии аграрного образования. 2013. Выпуск 17 (2013) внеочередной. С. 262-266.
- 7. Технология переработки молока и мяса: практикум / Р.С. Гизатуллин, С.Г. Канарейкина, Л.А. Зубаирова. Уфа: Башкирский ГАУ, 2011. 108 с.
- 8. Учебно-методическое пособие по проведению научно-исследовательских работ в скотоводстве: учебное пособие / X.X. Тагиров, Р.С. Гизатуллин, Т.А. Седых. Уфа: Башкирский ГАУ, 2007. 80 с.

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ СОБАК В РАЗЛИЧНЫХ ПОГОДНЫХ УСЛОВИЯХ

Янбекова А.Р., Шмидт Э.В.

Башкирский государственный аграрный университет, Уфа, e-mail: jalin4ik@mail.ru

Любой кинолог скажет, что работать со служебной собакой приходится в различных погодно-климатических условиях, на разнообразной местности, в любое время суток.

Различные комбинации внешних условий, т.е. взаимодействие факторов как раздражителей могут или