$$\begin{array}{c} \begin{array}{c} \text{NaNO}_2, \ 0^{\circ}\text{C} \\ \hline \\ \text{CF}_3\text{COOH, CHCI}_3 \end{array} \\ \begin{array}{c} \text{2} \end{array} \\ \begin{array}{c} \text{OH} \end{array} \\ \begin{array}{c} \text{OH} \end{array} \\ \begin{array}{c} \text{A} \\ \text{OH} \end{array} \\ \end{array}$$

Рис. 1. Взаимодействие феноксиаллила с азотистой кислотой, образующейся in situ

Рис. 2. Реакция феноксиаллила с системой NaNO₃-CF₃COOH

Превращение нитрозосоединений в нитросоединения под действием кислорода воздуха известный факт [3]. Однако образование минорных количеств нитросоединений в нашем случае является результатом параллельной реакции, что косвенно подтверждается при реакции (1) с системой NaNO, — CF, COOH.

Реакционная смесь в данном случае имела желтую окраску, что свидетельствует об отсутствии значимых количеств нитрозосоединений. Реакция протекает с преимущественным образованием *пара*-нитропроизводного (2), и образованием *пара*-нитрозопроизводного лишь в качестве побочного продукта. Был выделен также *о*-аллилфенол.

Экспериментальная часть

Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре «Varian BXR-400» в CDCl₃. В качестве внутреннего стандарта использовали остаточный сигнал СНС1, (б 7.25, м.д). ИК спектры записывали на спектрофотометре UR-20 в интервале 400-3600 см⁻¹ в вазелиновом масле. Масс-спектры получали на приборе Finnigan SSQ 7000 (типа GC-MS) с использованием капиллярной колонки (30 м х 2 мм, неподвижная фаза DB-1), газ-носитель – гелий (40 мл/мин) и программированием температуры от 50 до 300°C (10 град/мин). Энергия ионизации 70 эВ. Разделение реакционных смесей и контроль чистоты продуктов реакции проводили на колонках и на пластинах в тонком слое, носитель - силикагель L40/100 мкм (Чехия), используя элюент – диэтиловый эфир-петролейный эфир (40-70°С), 1:3 (по объему).

Взаимодействие соединения (1) с системой ${\bf NaNO_2-CF_3COOH}$. К раствору 10 ммоль соединения (1) в 5 мл ${\bf CF_3COOH}$ и 10 мл ${\bf CHCl_3}$ прибавляли 10 ммоль ${\bf NaNO_2}$ при температуре 0°С в течение 30 мин. Смесь перемешивали 30 мин, разбавляли 300 мл воды, экстрагировали 50 мл ${\bf CHCl_3}$. Органический слой промывали водой до достижения нейтральной среды и сушили ${\bf MgSO_4}$ Растворитель отгоняли, остаток хроматографиировали на силикагеле.

В результате реакции из феноксиаллила (1) образуется 3-(4-нитрозофенилокси)-1-пропен (5), жидкость синего цвета. Спектр ЯМР ¹H (CDCI₃), δ, м.д.: 4.68 д (2H, CH₂, ³J 5.3 Гц), 5.45 д (1H, CH₂, ³J 10.4 Гц), 5.60 д (1H, CH₂, ³J 17.2 Гц), 6.23 д.д.т (1H, CH₂, ³J 5.3, ³J 10.4, ³J 17.2 Гц), 7.05 д (2H аром, J 9.0 Гц), 7.92 д (2H дером, J 9.0 Гц). Спектр ЯМР ^{аром}С (CDCI₃), δ, м.д.: 69.41, 114.55, 118.74, 124.63, 131.8, 163.93, 164.62. Масс-спектр, m/z (I (1), 63 (15), 41 (100). Найдено, %: С 66.55; H 5.73; N 8.44. С₉H₉NO₂. Вычислено, %: С 66.25; H 5.56; N 8.58. В ходе реакции был выделен 3-(4-нитрофенилокси)-1-пропен (2), т.кип. 126-129°С (3 мм рт.ст.). Спектр ЯМР ¹H (CDCI₃), δ, м.д.: 4.68 (2H, CH₂, ³J 5.3 Гц), 5.45 д (1H, CH₂, ³J 10.4 Гц), 5.60 д (1H,

CH,, 3J 17.2 Γ ц), 6.23 д.д.т (1H, CH,, 3J 5.3, 3J 10.4, 3J 17.2 Γ ц), 7.05 д (2H $_{\rm apom}$, J 9.0 Γ ц), 7.92 д (2H $_{\rm apom}$, J 9.0 Γ ц); а также 2-аллилфенол (**3**) и нитрозамещенные фенолы.

Список литературы

- 1. Газзаева Р.А., Царгасов А.Дз., Федотов Н.А., Мочалов С.С. Поведение феноксициклопропилсульфида и феноксициклопропана в реакции с азотистой кислотой // Вестник МГУ. Сер. 2 хим. 2011. Т.52. С. 372-374.
- 2. White W.N., Gwynn D., Schlitt R., Girard C., Fife W. The ortho-Claisen Rearrangement. I. The Effect of Substituents on the Rearrangement of Allyl p-X-Phenyl Ethers// J. Am. Chem. Soc. – 1958. – № 80(13). – P. 3271-3277.
- 3. Hopf H., Mourad Aboul-fetouh E., Jones Peter G. A surprising new route to 4-nitro-3-phenylisoxazole // Beilstein J. Org. Chem. 2010. $N\!_{2}$ 6.

ПОЛУЧЕНИЕ АКТИВИРОВАННОГО УГЛЯ ИЗ ШЕЛУХИ ГРЕЧИХИ ДЛЯ УДАЛЕНИЯ ИЗ ВОДЫ АЛЮМИНИЯ

Меринова О.М., Носкова Т.В.

Алтайский государственный университет, Институт водных и экологических проблем СО РАН, Барнаул. e-mail: mom9292@mail.ru

Активированный уголь - сорбент с высокоразвитой пористой структурой, состоящий из углерода и обладающей большой способностью сорбировать газообразные, парообразные и растворенные вещества [1]. Уголь давно и эффективно используется для очистки воды от многих органических и неорганических компонентов. В промышленных масштабах активированные угли производят из древесных отходов, ископаемых углей и кокосовой скорлупы. Но их также можно изготавливать из любого углесодержащего материала. Для аграрных районов, получение активированного угля из отходов сельхозпроизводства с целью очистки питьевых вод, является очень важным и перспективным решением. Таким образом, возможна реализация сразу двух актуальных задач: утилизация растительных отходов и очистка воды. Так как здоровье и прекрасное самочувствие человеческого организма напрямую зависит от качества потребляемой воды, то вопросу ее безопасности уделяется огромное внимание. Но при традиционной водоподготовке в питьевую воду попадают ионы алюминия, потому что в качестве коагулянтов в основном используются его соли. В настоящее время достоверно доказано токсическое воздействие алюминия на растения и теплокровные организмы [2,3]. Поэтому большой интерес вызывают методы устранения алюминия из питьевой воды.

Целью данной работы стало получение активированного угля из растительных отходов переработки гречихи. И исследования адсорбционной способности полученного угля по отношению к ионам алюминия.

.a.				
Физико-химические	показатели	полученного	УГЛЯ ИХ	шелухи гречихи

A regulation of the second	Адсорбционная активность		Массовая доля	Суммарный объем
Активированный уголь	по йоду, %	по метиленовому голубому,	влаги, %	пор по воде, см ³ /г
из шелухи гречихи	8,8	167	5,7	3,3

Шелуху гречихи обрабатывали раствором ортофосфорной кислоты из расчёта 8% H_3PO_4 на массу сырья. Карбонизацию и активацию проводили в муфельной печи при температуре 300 ± 50 °C. Полученный уголь промывали и высушивали. Физико-химические показатели угля представлены в таблице 1.

Адсорбцию алюминия проводили при статических условиях путем смешивания 0,5 г активированного угля с 50 мл раствора алюминия с концентрацией от 0,1 до 1,0 мг/л, в пластиковых стаканах и встряхивали при комнатной температуре в течение 20 минут. Равновесную концентрацию алюминия в полученных растворах определяли на анализаторе жидкости "Флюорат-02-3М". По результатам исследования была построена изотерма адсорбции (рис. 1) и рассчитана степень извлечения (табл. 1.).

Рис. 1. Изотерма адсорбции ионов алюминия на активном угле из шелухи гречихи

Таблица 2 Степень извлечения алюминия активированным углем из шелухи гречихи

1	J 1
Концентрация раствора алюминия, мг/л	Степень извлечения, %
0,1	13
0,5	63
1,0	73

Физико-химические свойства полученного активированного угля из шелухи гречихи, а также изотерма адсорбции алюминия, свидетельствуют, что уголь имеет мелкопористую структуру. Степень извлечения возрастает с увеличением концентрации алюминия в исходном растворе и обнаруживает, что полученный уголь, возможно, использовать для очистки воды от ионов алюминия.

Список литературы

- 1. Колышкин Д.А., Михайлова К.К. Активные угли. Л.: Химия, 1972. 57 с.
- 2. Унгуряну Т.Н. Риск для здоровья населения при комплексном действии веществ, загрязняющих питьевую воду // Экология человека. 2011. №2. С. 14–20.
- 3. Alfrey A.C. Aluminum metabolism and toxicity. Proc. Am. Chem. Soc. Division of Environmental Chemistry. − 1987. − №27. − P. 458-459.

СОВРЕМЕННЫЕ КОАГУЛЯНТЫ И ФЛОКУЛЯНТЫ В ОЧИСТКЕ ПРИРОДНЫХ И СТОЧНЫХ ВОД

Настенко А.О., Зосуль О.И.

Тюменский государственный архитектурно-строительный университет, Тюмень, e-mail: galinakachalova@mail.ru

В данной работе содержится: сравнительный анализ и принцип действия современных коагулянтов и флокулянтов, используемых в практике очистки природных и сточных вод; лабораторные исследования основанные на процессах очистки промывных вод скорых фильтров водопроводных очистных станций городов Тюмени и Кургана с подбором наиболее эффективных коагулянтов и флокулянтов.

Научная новизна работы

Предложена реагентная очистка промывных вод скорых фильтров станции водоподготовки городов Тюмени и Кургана.

Практическая значимость работы

Произведен выбор современных реагентов, определены их дозы для снижения мутности промывных вод скорых фильтров с целью их оборотного использования

Водопроводные очистные станции городов Кургана и Тюмени – самые крупные в регионе Среднего и Южного Зауралья, следовательно, их влияние на экосистемы рек Тура, Тобол, Иртыш значительно в результате привноса в водные объекты несвойственных им химических веществ [1,2].

Практическая цель работы – усовершенствование станций водоподготовки, построенных в 70-х годах. Предложение – не сбрасывать промывную воду фильтров в реку, а возвращать ее на доочистку.

Принцип действия современных коагулянтов и флокулянтов, используемых для обработки промывных вод скорых фильтров

Коллоидно-дисперсные примеси удаляются из воды методом коагулирования с последующим осаждением и фильтрованием. Коллоидные частицы относятся к ультрамикрогетерогенным примесям, имеющим размер частиц от 10^{-7} до 10^{-9} м, обладающих высокой агрегативной устойчивостью за счет одноименного заряда.

Механизм коагулирования рассмотрим на примере, когда в воде присутствует глинистая взвесь, состоящая из алюмосиликатов общей формулы $Al_2O_3 \cdot ySiO_2 \cdot zH_2O$ или в простейшем виде $Al_2O_3 \cdot ySiO_2 \cdot zH_2O$. С химической точки зрения, глина состоит из молекул алюмокремниевой кислоты примерного вида $H_4Al_2Si_2O_9$ способной диссоциировать $H_4Al_2Si_2O_9 \leftrightarrow 4H^+ + Al_2Si_2O_9^-4$ на катион водорода и кислотный остаток алюмокремниевой кислоты.

Представим один из вариантов строения мицеллы коллоидного раствора алюмокремниевой кислоты.

$$\left\{ \! \left(\! H_4 A l_2 S i_2 O_9 \right)_m \cdot nA l_2 S i_2 O_9^{-4} \cdot 4 (n-x) H^+ \right\}^{\!\!-4} \cdot 4 x H^+$$
 ядро противоион

коллоидная частица