
динатами эвтектики 20 мол.% BiI₃ и 410°C. Разрез является квазибинарным. Определены поля первичной кристаллизации фаз. Построена диаграмма состояния разреза, подтвержденная результатами рентгенофазового анализа.

Исследование разреза ${\rm LiCdBiI_6-BiI_3}$ продолжает начатое изучение взаимодействия в тройной системе ${\rm BiI_3-LiI-CdI_2}$, литературные данные о которой отсутствуют.

Cоединение LiCdBil синтезировали из очищенных и обезвоженных иодидов лития и кадмия. Иодид висмута (III) использовали марки ч.д.а. Образцы вакуумировали в кварцевых ампулах, до остаточного давления 10⁻²Па при 413-439°С в течение суток. При исследовании образцов использовали метод ДТА, который проводили на термоанализаторе нового поколения «ДТА-850» с применением хромель-алюмелевой термопары. Эталоном служил прокаленный оксид алюминия. Скорость нагрева составляла 608 град/мин. РФА проводили на дифрактометре «Дрон-1» в CuK_aизлучении с Ni-фильтром. Взаимодействие по разрезу LiCdBiI,-BiI, изучали в интервалах концентраций от 0 до 100 мол. ВіІз. По результатам ДТА отожжённых образцов построена диаграмма плавкости разреза LiCdBiI₄-BiI₃.

Из рисунка видно, что данный разрез является квазибинарным эвтектического типа, ликвидус состоит из двух ветвей, отвечающих кристаллизации LiCd-BiI₆-BiI₃. Эвтектика имеет состав 20 мол.% BiI₃ при 320°C. Ниже температуры эвтектики еще существуют две твердые фазы LiCdBiI₆ и BiI₃. Ретгенофазовое исследование образцов, содержащих 30 и 50% BiI₃, показало наличие только двух фаз в системе, что подтверждают результаты ДТА.

МАГНИТНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Дзитоев Г.Р., Бигаева И.М.

Северо-Осетинский государственный университет им. К.Л. Хетагурова, Владикавказ, e-mail: kabaloev.1988@mail.ru

Магнитные материалы на основе редкоземельных металлов (P3M) и металлов триады железа использу-

ются для производства постоянных магнитов различного назначения. В последнее время все чаще встает вопрос о направленном синтезе магниттотвердых материалов на основе РЗМ. Однако теоретические основы и принципы разработки таких материалов пока еще отсутствуют, и необходимые данные можно получить, лишь экспериментально изучив характера взаимодействия металлов триады железа с редкоземельными металлами, особенно в областях интерметаллических соединений состава 2:17 и 1:5.

В настоящей работе было изучено при $800~^{0}$ К взаимодействие железа с иттрием и самарием в области составов более 75 атомных % железа и исследованы магнитные характеристики сплавов. Отмечена неограниченная растворимость соединений $Y_{2}Fe_{17}$ и $Sm_{7}Fe_{17}$ друг в друге.

Изучение магнитных характеристик сплавов самария и иттрия с железом показало, что интерметаллические соединения иттрия и самария с железом состава 1:5 и 2:17 являются ферромагнетиками и имеют самые высокие температуры Кюри (до 900-1000 К), по сравнению с другими сплавами этой системы. Анализ результатов изучения намагниченности насыщения говорит о том, что сплавы из областей твердых растворов на основе составов 1:5 и 2:17 обладают наивысшими, по сравнению с другими составами, значениями намагниченности.

В перспективе – создание теоретических основ и принципов разработки магнитотвердых материалов на основе редкоземельных металлов с металлами триады железа.

Сптсок литературы

- 1. Агаева Ф.А., Бигаева И.М. Фазовые равновесия и свойства сплавов самария с металлами триады железа и молибденом. Владикавказ: Изд-во СОГУ, 2011. 133 с.
- 2. Бигаева И.М., Агаева Ф.А. Взаимодействие иттрия с металлами триады железа и молибденом. Владикавказ: Изд-во СОГУ, 2014.

БИОЛОГИЧЕСКАЯ РОЛЬ МОЛИБДЕНА

Дыгова М.Р., Кубалова Л.М.

Северо-Осетинский государственный университет им. К.Л. Хетагурова, Владикавказ, e-mail: kubal@front.ru

Молибден относится к эссенциальным (жизненно необходимым) микроэлементам. Соединения молибдена поступают в организм человека вместе с пищей в количестве 75-250 мкг в сутки. Растворимые соединения легко всасываются из желудочно-кишечного тракта, а также абсорбируются из легких. Молибден входит в состав многих ферментов (ксантиндегидрогеназы, ксантиноксидазы, альдегидоксидазы, нитроредуктазы, сульфитоксидазы и др.), которые являются катализаторами окислительно-восстановительных процессов в растительных и животных организмах. Активные центры ферментов обычно содержат молибден, связанный с серой. Например, ксантиноксидаза – фермент, ускоряющий обмен сложных белков (в частности, пуриновый обмен):

ксантиноксидаза

ксантин $+ O_2 + H_2O$ — мочевая кислота $+ H_2O_2$

Если мочевая кислота не успевает выводиться из организма, то её соли скапливаются в суставах и мышечных сухожилиях, вызывая подагру. Установлено, что недостаток молибдена в организме сопровождается уменьшением в тканях ксантиноксидазы, что приводит к образованию в почках ксантиновых камней. Кроме того, происходит накопление в организме меди вплоть до медной интоксикации. Основные проявления дефицита молибдена в человеческом организме — это повышенная возбудимость, раздражи-

Таблица 1

тельность, нарушение зрительной адаптации к темноте («куриная слепота»), тахикардия.

Как лекарственные препараты соединения молибдена в медицинской практике не применяются. Однако в настоящее время ведется изучение эффективности тетрамолибдата аммония в терапии новообразований головного мозга и при мужском бесплодии. Имеются данные, что молибден играет важную роль в процессе включения фтора в зубную эмаль, а также в стимуляции процессов кроветворения.

Список литературы

- 1. Скальный А.В. Биоэлементы в медицине / А.В. Скальный, И.А. Рудаков. М.: Издательский дом «ОНИКС 21 век»: Мир, 2004. 272 с.
- 2. Чистяков Ю.В. Основы бионеорганической химии. М.: Химия, КолосС, 2007. 539 с.

КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ОБРАЗЦОВ ПИТЬЕВОЙ ВОДЫ

¹Есиев Р.К., ¹Закаева Р.Ш., ²Исаева С.Э.

¹Северо-Осетинская государственная медицинская академия Минздрава России, ²Республиканский лицей искусств, Владикавказ, e-mail: kabaloev.1988@mail.ru

В данной статье проводится сравнительный анализ питьевой воды разных видов с помощью химического и органолептического анализов. Для обнаружения предполагаемых ионов в образцах воды были применены различные методы качественного анализа, а для определения общей и временной жесткости воды — титриметрический метод количественного анализа.

Вторым по значению свойством является способность воды растворять вещества. Вода — универсальный растворитель. Благодаря этому ее состав не исчерпывается формулой H₂O. В воде содержатся газы, основания, кислоты, соли и органические вещества [1].

Некоторые исследователи считают, что отмечаемое благоприятное влияние жестких вод на сердечнососудистую систему обусловлено ионами магния, а ионы кальция способствуют уменьшению токсичности тяжелых металлов [6].

Длительное использование питьевой воды с нарушением гигиенических требований по химическому составу обуславливает развитие различных заболеваний у населения [8].

В связи с тем, что питьевая вода, подаваемая населению по водоводам распределительных систем, может не соответствовать установленным законодательством требованиям по СанПиН 2.1.4.1074-01[7], многие производители выпускают бутилированную питьевую воду, для которой существует свой стандарт ГОСТ Р 52109–2003[3].

Многие ученые и исследователи неоднократно обращались к теме соответствия потребляемой воды установленным нормам качества [2,5].

Целью данной работы являлось определить качество питьевой воды и соответствие её состава требованиям ГОСТа и СанПина.

Для исследования были взяты образцы воды питьевой:

- I. «Bon aqua».
- II. «Кисловодская курортная».
- III. «Джинал горная спорт».

IV. Питьевая вода из водовода городской распределительной сети г. Владикавказа.

Для всех образцов питьевой воды были определены органолептические показатели: прозрачность, мутность, цветность, наличие осадка, запах, вкус. Пробирочным методом определяли катионы: Ca^{2+} , Mg^{2+} и анионы: CO_3^{-2} , HCO_3^{-3} , SO_4^{-2-} , Cl^- . Капельным и микрокристаллоскопическим методом определяли наличие в образцах катиона $\text{K}^+[4]$.

Результаты качественного исследования образцов питьевой воды сведены в таблицу 1.

Количественный анализ образцов питьевой воды проводили титриметрическим методом. Данные по результатам титрования сведены в таблицах 2, 3, 4.

Результаты качественного анализа образцов питьевой воды

	Качественный реагент на ион						
№ и название образца	BaCl, на ион SO ₄ ²⁻	AgNO, на ион Čl	НСІ на ионы НСО ₃	(NH ₄) ₂ С ₂ О ₄ на ионы Са ²⁺	Na ₃ [Co(NO ₂) ₆] на ионы К ⁺	Хинали-зарин на ионы Mg ²⁺	
I. «Bon aqua»		+*			+*		
II. «Кисловодская курортная»	+	+		+	+	+	
III. «Джинал горная спорт»	+	+			+		
IV. Питьевая вода из водовода	+	+	+	+	+	+	

 [–] реакция протекала более интенсивно

 Таблица 2

 Результаты титрования по определению общей жесткости воды

	Объем трилона Б, мл					
Образцы воды питьевой	Опыт № 1	Опыт № 2	Опыт № 3	Среднее значение		
I. «Bon aqua»	2,6	2,7	2,6	2,63		
II. «Кисловодская курортная»	3,0	3,1	2,9	3,0		
III. «Джинал горная спорт»	1,1	1,1	1,1	1,1		
IV. Питьевая вода из водовода	3,7	3,6	3,6	3,63		