ры) для создания капельной конденсации, закрутка потока или вращение поверхности теплообмена, турбулизаторы и ребра для разрушения пленки конденсата и др. К наиболее эффективным и простым по технологии изготовления относятся дискретношероховатые поверхности [1]. Дискретно-шероховатые поверхности имеют выступы и впадины, получаемые, например, путем кольцевой накатки. При этом на наружной поверхности труб образуются периодически расположенные кольцевые канавки, а на внутренней кольцевые диафрагмы. Такие искусственные турбулизаторы интенсифицируют теплообмен снаружи и внутри труб. При этом наружный диаметр труб не увеличивается, что не меняет плотность пучка и технологию сборки теплообменника.

В работе [3] приведены результаты экспериментов, полученные Г.А. Дрейцером при конденсации на горизонтальных трубах с накатками. Коэффициенты теплоотдачи увеличиваются по сравнению с гладкими трубами в 1,8-2,7 раза. Эффект возрастает при увеличении глубины канавок, уменьшении их радиуса закругления и снижении шага расположения. При этом гидравлическое сопротивление труб с накаткой может возрасти в 3-4 раза. Вместе с тем, для таких труб была обнаружена закономерность опережающего роста теплоотдачи над ростом гидравлического сопротивления в определенном диапазоне геометрических характеристик накатки [2]. Принимая глубину впадин и высоту выступов, соответствующих отношению диаметра выступов к внутреннему диаметру трубы в диапазоне 0,97-0,98, можно считать, что при увеличении коэффициентов теплоотдачи для пара в 1,75 и для воды в 2 раза гидравлическое сопротивление возрастет примерно в 1,7 раза.

Эти данные использовались для оценки результатов интенсификации теплообмена в сетевом подогревателе ПСГ-5000-2,5-8-І. Предварительно был выполнен тепловой расчет этого серийного подогревателя с гладкими трубами при максимальном тепловом потоке 383,8 МВт. Расчеты показали, что коэффициенты теплоотдачи со стороны пара и воды составили соответственно 4446 и 10748 Вт/м²×К, коэффициент теплопередачи 3145 Bт/м²×К, число труб 9398 и их длина 8,92 м. Для труб с кольцевой накаткой коэффициенты теплоотдачи в соответствии с изложенным выше возрастут для пара и воды соответственно до 7780 и 21496 Вт/м²×К. Расчет сетевого подогревателя с накатными трубами и прочих равных условиях дал следующие результаты: коэффициент теплопередачи $5712~\mathrm{Br/m^2} \times \hat{\mathrm{K}}$, поверхность теплообмена 2754 м², число труб 7058, длина труб 6,54 м, общая длина корпуса 9,34 м, диаметр корпуса 3,154 м. Таким образом, применение труб с кольцевыми накатками может снизить требуемую поверхность теплообмена подогревателя в 1,8 раза, сократить число труб на 2340 единиц, уменьшить длину подогревателя примерно на 3,5 м, а диаметр корпуса примерно на 0,5 м. Все это понизит металлоемкость и стоимость подогревателя. Учитывая, что затраты энергии на прокачку теплоносителя возрастут, решение о целесообразности применения накатных труб в сетевом подогревателе может быть принято после соответствующего технико-экономического анализа.

Список литературы

- 1. Назмеев, Ю.Г. Теплообменные аппараты ТЭС / Ю.Г. Назмеев, В.М. Лавыгин. М.: Изд. дом МЭИ, 2007. 269 с.
- 2. Методы интенсификации теплообмена. URL: http://www. Ims. kgeu.ru/pluginfile (дата обращения: 12.11.2015).

3. Методы интенсификации теплообмена при конденсации пара. URL: http://www.vunivere.ru/work50413 (дата обращения: 09.12.2015).

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ ПО ОЦЕНКЕ ЦЕЛЕСООБРАЗНОСТИ ПРИМЕНЕНИЯ СМЕШИВАЮЩИХ РЕГЕНЕРАТИВНЫХ ПОДОГРЕВАТЕЛЕЙ

Слаква Е.С., Седельников Г.Д.

ФГБОУ ВПО «Комсомольский-на-Амуре государственный технический университет», Комсомольск-на-Амуре, e-mail: ido@knastu.ru

В системе регенерации турбоустановок в основном применяются подогреватели поверхностного типа. Однако по энергетической эффективности такие регенеративные подогреватели не являются лучшим решением, т.к. в них всегда присутствует недогрев основного конденсата или питательной воды до температуры насыщения в корпусе подогревателя. По данным Сибирского энергетического института расчетный недогрев для подогревателей высокого давления может составлять 3-6°C и для низкого давления (ПНД) 1,5-2,5°C. В условиях эксплуатации эти температурные напоры существенно возрастают, особенно для первых (по ходу основного конденсата) ПНД, в которых они достигают 7-12°С [1]. Причина в том, что эти ПНД подключены к отборам турбин с давлением меньше атмосферного и на их работу отрицательно влияют эксплуатационные присосы воздуха. Экспериментально установлено, что даже 1% воздуха в паре снижает коэффициент теплоотдачи при конденсации примерно на 60%. Причина в том, что при конденсации парциальное давление пара у поверхности охлаждения снижается, а парциальное давление воздуха возрастает. Поэтому воздух затрудняет доступ пара к поверхности конденсации и его нужно постоянно удалять из этой зоны.

В подогревателях смешивающего (контактного) типа нет недогрева воды до состояния насыщения, а присосы воздуха практически не сказываются на их работе. Отсутствие недогрева повышает тепловую эффективность установки, т.к. снижается давление пара в отборе и работа пара в турбине увеличивается. Кроме того, в смешивающих подогревателях происходит частичная деаэрация воды, а отсутствие труб повышает надежность работы, снижает массу (в два и более раза) и стоимость таких подогревателей. Вместе с тем, после каждого смешивающего подогревателя, в отличие от поверхностного, необходима установка насоса, что ведет к росту расхода электроэнергии на собственные нужды. Частично эта проблема решается возвышением одного пологревателя над другим, если на станции есть для этого

Для турбоустановки Т-180/210-130 Комсомольской ТЭЦ-3 была выполнена расчетная оценка целесообразности применения смешивающих регенеративных подогревателей. Рассматривались варианты замены одного, двух, трех и всех четырех (по ходу конденсата) поверхностных ПНД на подогреватели смешивающего типа. Итоговые результаты расчетов представлены в таблице, где обозначены: $N_{\rm эл}$ — электрическая мощность турбоустановки, $Q_{\rm ту}$ — полный расход тепла на турбоустановку, $H_{\rm пр}$ — приведенный теплоперепад, $D_{\rm o}$ — расход пара в «голову» турбины, d — удельный расход пара, $\eta_{\rm эл}$ — КПД по производству электроэнергии (теплофикационный режим), $b_{\rm эл}$ — удельный расход топлива на производство электроэнергии.

Обозначение, ед. из- мерения	Исходный вариант	Количество смешивающих подогревателей					
		1	2	3	4		
N _{∋,II} , MBT	180	180	180	180	180		
$Q_{\scriptscriptstyle \mathrm{TY}}$ MBT	516,9	515,8	515,2	511,1	509,4		
$H_{\Pi P}$ кДж/кг	991,7	992,1	996,4	1002,8	1006,8		
D ₀ , кг/с	185,2	185,1	184,8	183,1	182,4		
<i>d</i> , кг/кВт.ч	3,704	3,702	3,696	3,662	3,648		
ηэл	0,844	0,848	0,850	0,867	0,874		
<i>b</i> эп, г/кВт.ч	161,7	160,9	160,4	157,3	156,0		

Технико-экономические показатели сравниваемых вариантов

Полученные результаты показывают энергетическую эффективность применения смешивающих регенеративных подогревателей взамен поверхностных. Так, электрический КПД и удельный расход топлива при использовании в тепловой схеме четырех ПНД смешивающего типа улучшаются примерно на 3,5%. Для практической реализации можно рекомендовать заменить все поверхностные ПНД и деаэратор на четыре смешивающих подогревателя с возвышением первого подогревателя над вторым, а третьего над четвертым. Это сократит расход электроэнергии на привод насосов и их количество, т.к. потребуется лишь один перекачивающий насос между вторым и третьим подогревателями.

Список литературы

1. Дорохов, Е.В. Основы проектирования тепловой схемы энергоблоков ТЭС на суперкритических параметрах / Е.В. Дорохов, А.С. Седлов. – М.: Изд. дом МЭИ, 2007. – 152 с.

ПРИМЕНЕНИЕ АБСОРБЦИОННЫХ ТЕПЛОВЫХ НАСОСОВ В ТЕПЛОВОЙ СХЕМЕ ТУРБОУСТАНОВКИ Т-180/210-130

Шидловская Д.К., Седельников Г.Д.

ФГБОУ ВПО «Комсомольский-на-Амуре государственный технический университет», Комсомольск-на-Амуре, e-mail: ido@knastu.ru

Применение тепловых насосов позволяет передавать тепло низкого потенциала на более высокий температурный уровень. Это является одним из направлений энергосбережения, т.к. использовать низкопотенциальное тепло затруднительно и оно, как правило, сбрасывается в окружающую среду. Вместе с тем, по оценки эффективности работы тепловых насосов в составе тепловых электрических станций у специалистов нет однозначного мнения. Так, в работе [1] показано, что применение компрессорных тепловых насосов в схемах ТЭЦ не дает энергетического эффекта. С другой стороны есть примеры успешного применения тепловых насосов, в частно-

сти, на электростанции Шенту (Китай), на Новосибирской ТЭЦ-4 [2] и др.

Эффективность использования тепловых насосов определяется как их типом и видом рабочего тела, так и способом их включения в тепловую схему турбоустановки. Наряду с компрессорными есть теплоиспользующие тепловые насосы, работающие на теплоте горячей воды, пара или газа. Расход электроэнергии в таких агрегатах минимальный, т.к. идет только на привод насосов, перекачивающих теплоносители. К наиболее эффективным теплоиспользующим тепловым насосам относятся абсорбционные бромистолитиевые тепловые насосы (АБТН).

ОКБ «ТЕПЛОСИБМАШ» предлагает АБТН с паровым и газовым обогревом тепловой мощностью от 1725 до 11000 кВт [2]. Они предназначены для теплоснабжения различных объектов с температурой до 80°С и используют сбросную теплоту от источников с температурой от 20 до 40°С. Доля утилизируемой теплоты низкого потенциала доходит до 40% от тепловой мощности АБТН.

Для тепловой схемы турбины Т-180/210-130 рассматривалась возможность использования двойного эффекта АБТН: дополнительное охлаждение циркуляционной воды после градирни с помощью испарителя и нагрев воды горячего водоснабжения и сетевой воды с помощью абсорбера и конденсатора АБТН. Был выполнен расчет АБТН на тепловую мощность 25 МВт и расчеты тепловой схемы турбоустановки: для летнего периода с отпуском 25 MBт на горячее водоснабжение, для весеннего и осеннего отопительных периодов с тепловыми нагрузками до 100 МВт. Итоговые результаты приведены в таблице 1, где обозначены: $Q_{\scriptscriptstyle {
m TV}}$ – полный расход тепла на турбоустановку, $D_{\rm O}$ – расход пара в «голову» турбины, $D_{\rm TII}$ – расход пара из отборов турбины на теплоснабжение, на производство электроэнергии.

Технико-экономические показатели вариантов с сетевыми подогревателями (СП) и с тепловыми насосами (ТН)

Обозначение, единица измерения	Тепловая нагрузка, МВТ									
	25		50		75		100			
	СП	TH	СП	TH	СП	TH	СП	TH		
$Q_{_{\mathrm{T}\mathrm{y}^{\mathtt{o}}}}\mathrm{MBr}$	350,9	339,8	367,6	353,7	384,4	362,1	403,9	370,4		
D_{o} , кг/с	126	122	132	127	138	130	145	133		
D_{TII} , кг/с	10,6	5,9	21,2	11,9	31,8	17,8	42,5	23,8		
d, кг/к B т.ч	2,52	2,44	2,64	2,54	2,76	2,6	2,9	2,66		
η_{in}	0,498	0,515	0,511	0,534	0,525	0,566	0,535	0,601		
$b_{\!\scriptscriptstyle \supset\!\!\!\perp\!\!\!\perp}$, г/к ${ m B}$ т'ч	246,9	238,5	240,5	230,1	234,2	217,4	229,9	204,7		