Таблица 3

Влияние ориентации зубков при посадке на урожайность чеснока

Сорт рорионт	Урожайность т/га		Средняя масса, г		Количество зубков	Рентабель-	Окупае-
Сорт, вариант	общая	товарная	зубка	луковица	в луковице, шт	ность, %	мость, руб.
Тарский «донцем вниз»	23,3	23,2	10,1	63,6	6,3	61,45	
Тарский «вразброс»	22,6	22,4	8,5	61,1	6,0	21,3	
HCP ₀₅	0,7						
Комсомолец «донцем вниз»	13,2	13,0	3,9	26,6	7,6	-	0,44
Комсомолец «вразброс»	11,4	11,2	3,1	25,7	8,3	-	0,60
HCP ₀₅	1,1						

Однако у сортообразца Тарский прибавка в урожае несущественна при НСР о 0,7 т/га (при посадке донцем вниз -23.3 т/га, при посадке вразброс -22.6).

У сорта Комсомолец урожайность была получена более низкая 13,2 и 11,4, соответственно. Сорт Комсомолец оказался убыточным, окупаемость затрат при способе посадки донцем вниз составила 0,44 рубля на 1 рубль вложенных затрат и 0,60 рубля при посадке вразброс.

Результаты исследований показывают, что ориентированная посадка зубков (донцем вниз) обеспечивает лучшую перезимовку. Посадка вразброс не приводит к существенному снижению урожайности и сокращению средней массы луковиц у сортообразца Тарский. Замена ориентированной посадки (проводимой только вручную) на неориентированную (при механизированной посадке сеялкой) является целесообразной.

Список литературы

- 1. Методика Государственного сортоиспытания сельскохозяйственных культур. М.: Колос, 1975 г. 61 с. 2. ГОСТ 7977–87. Чеснок свежий заготовляемый и поставляемый. М.: Изд-во стандартов, 2010. 5 с.

ОПРЕДЕЛЕНИЕ СТЕПЕНИ ВЫЗРЕВАНИЯ ЛОЗЫ ВИНОГРАДА В УСЛОВИЯХ ЮЖНОЙ ЛЕСОСТЕПИ ОМСКОЙ ОБЛАСТИ

Середа И.В., Симоненко Л.В., Кумпан В.Н.

Омский государственный аграрный университет им. П.А. Столыпина, Омск, e-mail: sereda_ira_93@mail.ru

В условиях Сибири – виноград, не зимостойкая теплолюбивая многолетняя лиана. Несмотря на южное происхождение, эта культура пользуется большой популярностью среди сибирских садоводов-любителей [1]. Одним из важных показателей перезимовки виноградного растения в условиях Сибири является хорошее вызревание лозы, это более важно, чем вызревание урожая, от этого зависит не только закладка урожая следующего года, но и общее состояние виноградного растения.

Степень зрелости древесины является важным моментом для виноградного растения. С вызреванием древесины связаны – зимостойкость побега и почек зимующего глазка, урожай винограда предстоящего года, а также качество черенков при производстве посадочного материала. По А.С. Мержаниану [3], хорошо вызревшая лоза имеет такие внешние признаки, как яркая окраска коры побега, легкое потрескивание при сгибании лозы, отношение диаметра сердцевины к древесине должно быть меньше ½ и т. д.

При определении степени вызревания побега более правильно рассматривать как отношение площади поперечного сечения сердцевины к древесине (или к площади поперечного сечения всего побега).

Перед обрезкой виноградных кустов, одновременно с определением эмбриональной плодоносности зимующих глазков и прогнозированием урожая винограда измеряется общий диаметр побега пятого междоузлия в двух перпендикулярных плоскостях и диаметр сердцевины. Затем рассчитываются общая площадь поперечного сечения побега, сердцевины и древесины [2].

Изучение вопроса, вызревание лозы и научное обоснование прогнозирование перезимовки сортов винограда в условиях Сибири представляет собой научную новизну.

Целью исследования явилось определение коэффициента вызревание лозы винограда в условиях южной лесостепи Омской области в 2015 г.

Объектами исследования явились 8 сортов винограда, посадки 2009г., произрастающие на учебноопытном поле Омского ГАУ. Замеры побегов проводили штангенциркулем.

Расчет велся по следующей методике: условный коэффициент вызревания побега (Кв) определяется по отношению площади поперечного сечения древесины к общей площади сечения побега, при этом установлено, что: хорошее вызревание при Кв, равном не менее 0,90; удовлетворительное – Кв от 0,80 до 0,89 и слабое вызревание при Кв менее 0,80 /3/. Данные исследований приведены в таблице.

Степень вызревания однолетних побегов

C	Побеги				
Сорт	Общий диметр, мм	Диаметр сердцевины, мм	Кв		
Аяр	5,7	2,9	0,74		
Восторг	6,1	4,0	0,57		
Катыр	7,7	4,6	0,64		
Эдна	7,5	4,5	0,64		
Московитянин	7,0	3,0	0,82		
ГФ	7,8	4,0	0,74		
Агат Донской	7,6	4,3	0,68		
Тукай	10,6	5,2	0,76		
HCP05	1,5	1,2	0,12		

Кв – условный коэффициент вызревания побегов.

Как показывают, данные таблицы общий диаметр лозы у сортов винограда колеблется от 5,7 (с. Аяр) до 10,6 мм (с. Тукай), диаметр сердцевины составил 2,9 (с. Аяр) – 5,2 мм (с. Тукай). Математическая обработка данных показывает, что по общему диаметру побега между сортом Аяр и Тукай наблюдается существенная разница ($HCP_{05} = 1,5$). По диаметру сердцевины существенная разница наблюдается между сортами с сортом Аяр, кроме сорта Московитянин.

Коэффициент вызревания (Кв) лозы в зависимости от сорта составляет от 0,57 (с. Восторг) до 0,82 (с. Московитянин). Из исследуемых сортов Аяр, Восторг, Эдна, Катыр, $\Gamma\Phi$, Агат Донской, Тукай выявлено слабое вызревание побегов (Кв – 0,57 – 0,76).

Единственный сорт, у которого побеги вызрели удовлетворительно, оказался сорт Московитянин (Кв-0,82), следовательно, именно этот сорт наиболее подготовлен к перезимовке в наших условиях Омской области. Математическая обработка обработанных данных показывает существенную разницу по коэффициенту вызревания между сортом Московитянин и сортами Восторг, Катыр, Эдна, Агат Донской, также разница наблюдается между сортом Восторг и сортами Аяр, $\Gamma\Phi$, Тукай (HCP $_{05}$ =0,12).

По результатам исследований можно сделать предварительные выводы:

- 1. На степень вызревания лозы влияет определенное количество факторов: пасынкование, нормировка урожая, проведение своевременной чеканки, своевременные обработки против вредителей и болезней, прекращение поливов в августе, правильное проведение удобрений, временное осеннее укрытие.
- 2. Для полноценного и качественного вызревания виноградной лозы, осеннюю обрезку необходимо проводить как можно позже, глубокой осенью. В это время происходит отток всех питательных элементов в многолетнюю скелетную древесину и корневую систему виноградного растения, ткани лозы избавляют свои клетки от избытка влаги, и лоза приобретает соломенный или коричневый оттенок.

Список литературы

- 1. Кумпан В.Н. Изучение толерантности сортов винограда к условиям перезимовки в южной лесостепи Омской области/ В.Н. Кумпан, С.Г. Сухоцкая, Н.А. Прохорова, А.П. Клинг // Вестник Алтайского государственного университета. Барнаул, 2014. 12 (122). С.39-43.
- 2. Матузок Н.В. К методике определения вызревания побегов у винограда / Н.В. Матузок // Совершенствование сортимента, производство посадочного материала и винограда: Сборник научных трудов / КГАУ. – Выпуск 394 (422). – Краснодар, 2002. – С. 158-160.
- 3. Мержаниан А.С. Виноградарство / А.С. Мержаниан. М.: Сельхозгиз, 1939. 388 с.

Фармацевтические науки

РЕЗУЛЬТАТЫ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СУММЫ ФЛАВОНОИДОВ ТРАВЫ МАНЖЕТКИ ТВЕРДОЙ, ПРОИЗРАСТАЮЩЕЙ НА ТЕРРИТОРИИ КАРАЧАЕВО-ЧЕРКЕССКОЙ РЕСПУБЛИКИ И РЕСПУБЛИКИ СЕВЕРНАЯ ОСЕТИЯ-АЛАНИЯ

Айрапетян Э.Э., Бабаян М.С., Леонова В.Н.

Пятигорский медико-фармацевтический институт, филиал ГБОУ ВПО ВолгГМУ Минздрава России, e-mail: shik0505@mail.ru

Виды рода манжеток – это не только декоративные растения, которые способны украсить любой сад, но и лекарственные средства, помогающие при многих заболеваниях.

Ботаники всего мира до сих пор не могут прийти к единому мнению относительно количества видов манжетки.

Но все они согласны с тем, что различия между видами – минимальны, да и те преимущественно касаются времени цветения, размера самого растения и внешних особенностей.

Все виды манжетки в целом обладают практически идентичными лечебными свойствами, благодаря чему применяются в различных странах в качестве вяжущего, противовоспалительного, антисептического и успокаивающего средства.

Существуют различные препараты с манжеткой (преимущественно лекарственные сборы), устраняющие нарушение обмена веществ. В свою очередь, службой здравоохранения Германии разрешено применение препаратов манжетки в качестве вспомогательного средства при лечении кишечных болезней, причем как у детей, так и у взрослых.

Целью данного исследования было установить содержание суммы флавоноидов в траве манжетки твердой, произрастающей в различных районах Северного Кавказа.

Объектом исследования явилась трава манжетки твердой (Alchemilla dura Bus.), собранная в Карачаево-Черкесской республике и Республике Северная Осетия в июле 2015 года.

Для определения количественного содержания флавоноидов в траве манжетки твердой использовали метод дифференциальной спектрофотометрии, в пересчете на рутин, так как, дифференциальные спектры флавоноидов травы манжетки твердой по положению максимумов светопоглощения (410 нм) были близки к дифференциальному спектру комплекса рутина с алюминия хлоридом [1,2].

Данные о содержании флавоноидов представлены в табл. 1.

Таблица 1 Результаты количественного определения суммы флавоноидов в траве манжетки твердой, собранной в Карачаево-Черкесской Республике ($m_{\rm cr}=0.0485, A_{\rm cr}=0.389$)

<u>№</u> п/п	A _x	Содержание суммы флавоноидов, %	Метрологические характеристики
1	0,467	1,27	X = 1,27%
2	0,476	1,30	S = 0.0151
3	0,461	1,26	$\Delta X = 0.0158$
4	0,468	1,28	$S_{\overline{x}} = 0,0061$
5	0,460	1,26	A .
6	0,465	1,27	$E = \pm 1,24\%$