УДК 519.6

Представление сложных систем в виде агрегатов

Иванов А.С. Мурзин Д.И. Астапов В.Н.

Самарский Государственный Технический Университет, Самара, e-mail: alexandrivanov9644@yandex.ru

Representation of complex systems in the form of aggregates

Ivanov A.S. Murzin D.I. Astapov V.N.

Samara State Technical University, Samara, e-mail: alexandrivanov9644@yandex.ru

Рассмотрим СМО следующего вида: в моменты времени t_j , образующие случайный поток однородных событий, в систему поступают заявки. Заявка, поступившая в момент времени t_j , характеризуется параметром a_j . Если в

момент времени t_j канал свободен, заявка немедленно принимается к обслуживанию. В противном случае заявка ставится в очередь, где может находиться некоторое ограниченное время $\tau_j^{\text{ож}} = \varphi(\alpha_j, \beta)$ где β – параметр системы. Если до момента времени t_j + $\tau_j^{\text{ож}}$ заявка не будет принята к обслуживанию, она получает отказ. Заявки принимаются к обслуживанию в порядке очереди. Длительность обслуживания $\tau^{\text{об}} = \psi(\alpha_j, \beta)$.

Consider the CFR of the following type: at time t_j , forming a random stream of homogeneous events, applications are received into the system. The application received at time t_j is characterized by the parameter a_j . If

the channel is free at time t_(j), the request is immediately accepted for service. Otherwise, the application is put in a queue, where there may be some limited time $\tau \tau_j^{\text{OW}} = \varphi(\alpha_j, \beta)$ where β is the parameter the system. If the application is not accepted for service before the time $t_j + \tau_j^{\text{OW}}$ it is refused. Applications are accepted for service on a first-come, first-served basis. Service duration τ^{o} vol= $\psi(\alpha_j, \beta)$.

Техническое задание.

1. Представить в виде агрегата n-канальную СМО с ожиданием. Величина управляющего воздействия изменяется через j приходов заявок. Смысл управляющего воздействия — путём изменения количества мест в очереди обеспечить требуемую . $P_{\text{отк}}^{\text{пр}}$ и $P_{\text{обс}}^{\text{пр}}$ Правило выбора каналов — «по жребию». Заявки принимаются к обслуживанию в порядке поступления. Характеристика входного потока λ , потока обслуженных заявок μ ; значения n,j, $P_{\text{отк}}^{\text{пр}}$ Δg приведены в таблице.

Номер варианта	1
n	1
j	10
$,P_{\mathtt{OTK}}^{\mathtt{np}}$	0,1
à	1
Среднее время обслуживание $\frac{1}{\mu}$ ед. времен.	0,2
Δg	1

- 2. Представить СМО в виде агрегата, для чего в первую очередь записать состояния агрегата zl(t).
- 3. Составить блок-схему алгоритма решения задачи и составить программу. 4. После проверки алгоритма преподавателем решить задачу на ЦВМ.
- 5. Провести анализ полученных результатов.

Целью моделирования является оценка доли обслуженных заявок и доли отказов. Состояния агрегата следующие:

 $z_1(t)$ - время, оставшееся до конца обслуживания заявки;

 $z_{2}\left(t\right)$ - величина управляющего сигнала.

Для построения операторной схемы алгоритма необходимы следующие операторы:

- 1. F_1 ввод исходных данных;
- 2. A_2 определение параметра μ по формуле:

$$\mu := \frac{1}{\tau_{\rm cp}^{\rm ofc, I}};$$

 $\it 3.\,\,\, A_3$ - определение $\it a$ по формуле:

$$a := U_1 + U_2$$
;

 $4. \ A_4$ - определение U_1 формуле:

$$U_1:=U_2$$

- **5.** P_5 проверка условия a < 4;
- $6. \ A_6$ определение a по формуле:

$$a := a - 4$$
;

7. A_7 – определение U_2 по формуле:

$$U_2 := a$$
;

8. A_8 - определение числа ζ из ряда случайных чисел с равномерным распределением в интервале [0;1] (РСЧ) по формуле:

$$\zeta {:=} \frac{a}{4} \, ;$$

9. Φ_9 - формирование интервала между последовательными приходами заявок τ^n по формуле:

$$\tau^n := -\frac{\ln \zeta}{\lambda}$$

10. $A_{10}\,$ - определение моментов прихода заявок $au^n\,$ по формуле:

$$t^n := t^n + \tau^n$$

- 11. P_{11} проверка условия $t^n < T$;
- 12. $K_{12}\,$ счётчик количества заявок, поступивших в систему, J:

$$J := J + 1;$$

- 13. P_{13} проверка условия (J **mod** J _ Control) = 0;
- 14. P_{14} проверка условия $\frac{L}{I} > P_{\text{отк}}^{\text{пр}}$;
- 15. A_{15} определение числа мест в очереди $\it Quic_Maximum$ по формуле:

 $Quic _Maximum := Queic _Maximum + \Delta g$;

16. A_{16} - определение k по формуле:

$$k := 1;$$

17. A_{17} - определение минимального времени освобождения канала $t_{min}^{\text{осв}}$ по формуле:

$$t_{min}^{\text{OCB}} := t_k^{\text{OCB}}$$
;

18. A_{18} - определение номера *Channel* по формуле:

Channel :=
$$\kappa$$
;

19. K_{19} - счётчик номера канала k:

$$k := k + 1;$$

- 20. P_{20} проверка условия **k** <= **Number** _ **Of** _ **Channels**;
- 21. P_{21} проверка условия $t_{min}^{\text{осв}} < t_{k}^{\text{осв}}$;
- 22. P_{22} проверка условия $t^n > t_{Chanel}^{\text{OCB}}$;
- 23. P_{23} проверка условия **Length** _ **Of** _ **Quic** = **0**;
- 24. Φ_{24} формирование момента начала обслуживания заявки t^n по формуле:

$$t^n := t^{(n)}$$
:

25. $\Phi_{25}\,$ - формирование случайного времени обслуживания заявки $au^{\text{обсл}}$ по формуле:

$$au^{\mathsf{обсл}} := - \frac{ln\zeta}{\mu}$$

- 26. P_{26} проверка условия $t^{(H)} + \tau^{(\text{обсл})} \le T$;
- $27A_{27}$ определение момента освобождения канала номер Channel от обслуживания заявки $t_{Channel}^{\text{ocb}}$ по формуле:

$$t_{Channel}^{\text{OCB}} = t^{\text{H}} + \tau^{\text{ОБСЛ}}$$

28. K_{28} — счётчик количества обслуженных заявок M :

$$M:=M+1$$

29. . K_{29} — счётчик количества заявок, получивших отказ, L:

$$L:=L+1$$

- 30. . P_{30} проверка условия max J< J_{max} □;
- 31. . A_{31} определение w по формуле:

TT7.	_	

32. . Φ_{32} – формирование момента начала обслуживания заявки $t^{\rm H}$ по формуле:

$$t^{\scriptscriptstyle \rm H}=t^{\scriptscriptstyle \rm OCB}_{\it Channel}$$

- $33...P_{33}$ проверка условия w< Quic_Of_Length;
- 34. . A_{34} определение положений заявок в очереди Quic[w] по формуле:

35. . K_{35} — счётчик номера очереди w:

$$w := w+1$$

36. . A_{36} – определение параметра освободившегося места в очереди Queue[w] по формуле:;

37. . A_{37} – определение длины очереди Length _ Of_ Quic по формуле:

38. . Р₃₈ – проверка условия

39. A_{39} - определение длины очереди Length_Of_Queue по формуле:

40. A_{40} – определение **w** по формуле:

41. A_{41} - определение параметра занимаемого места в очереди Queue[\emph{w}] по формуле:

$$Quic[w]:=t^n$$
;

42. A_{42} - определение доли обслуженных заявок $P^{\text{обсл}}$ по формуле:

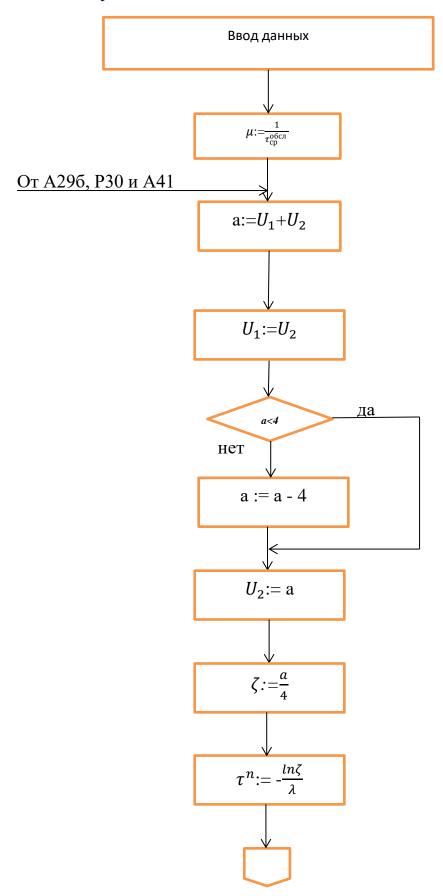
43. ${\bf A_{43}}$ - определение доли заявок, получивших отказ, ${\bf P^{otk}}$ по формуле ${\bf P^{otk}}:=rac{L}{J}$

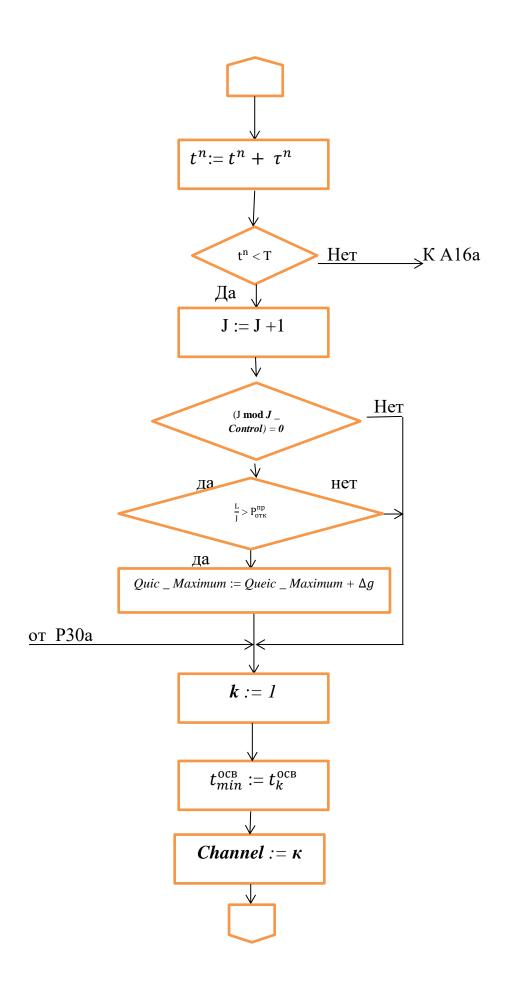
$$P^{\text{отк}} := \frac{L}{L}$$

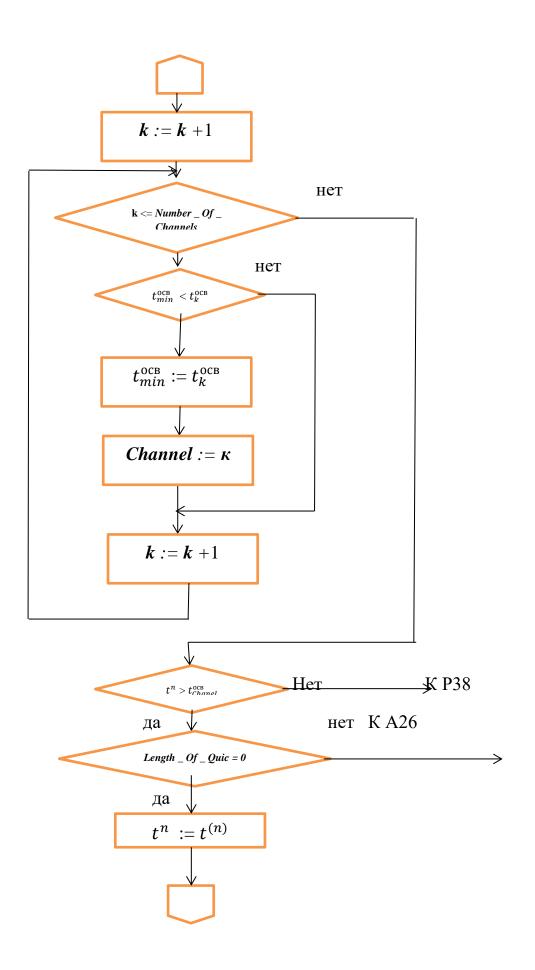
44. $Я_{44}$ - конец вычислений и выдача результатов.

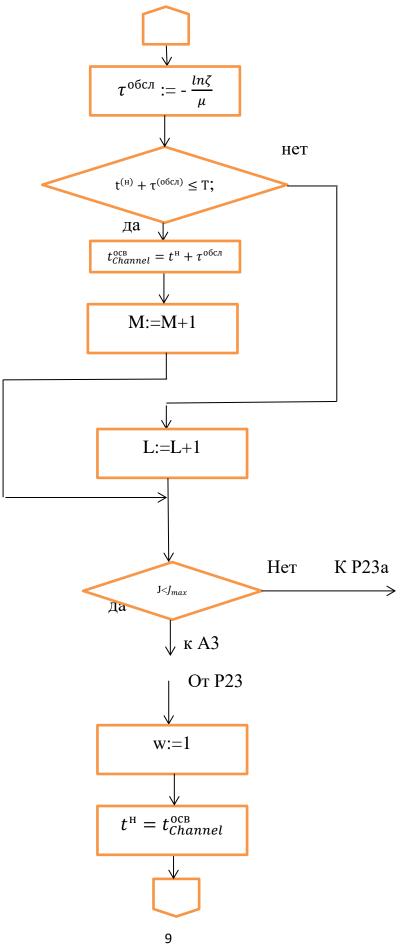
Операторы, имеющие после номера букву, совершенно аналогичны оператору с тем же номером, но без буквы.

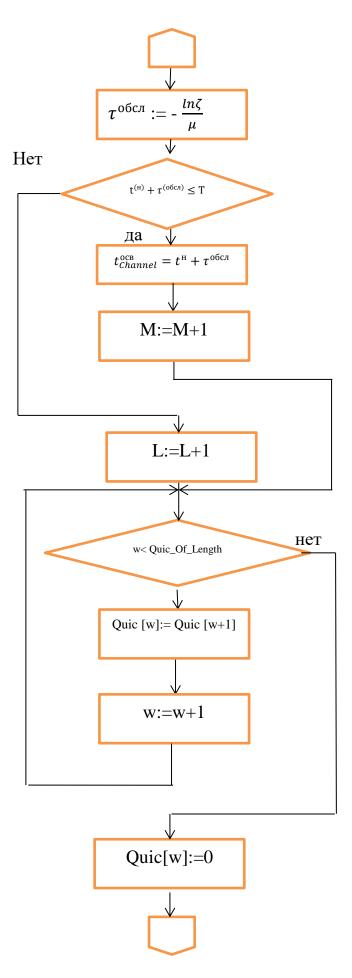
Исходные данные:


- 1. $\lambda = 1$;
- 2. $\tau_{cp}^{oбc\pi} = 0.2;$
- 3. Number_Of_Channels = 1;
- 4. Channel = 1;
- 5. $\tau^n = 0$;
- 6. T=1000;


- 7. $J_{max} = 200;$
- 8. $J_{control} = 10;$
- 9. $\Delta g = 1$;
- 10. $P_{\text{пр}}^{(\text{отк})} = 0.1;$
- 11. $U_1 = 3.141592$;
- 12. $U_2 = 0.542101$;


Операторская схема алгоритма:


 $F_{1} A_{2} \ ^{2,296,30,41} A_{3} \ A_{4} \ P_{5}^{\downarrow 6,\downarrow 7} \ ^{5} A_{6}^{\downarrow 7} \ ^{5,6} A_{7} \ A_{8} \ \varPhi_{9} \ A_{10} \ P_{11}^{\downarrow 12,\downarrow 16a} \ ^{5} K_{12} \ P_{13}^{\downarrow 14,\downarrow 16} \ ^{13} P_{14}^{\downarrow 15,\downarrow 16} \ ^{14} A_{15}^{\downarrow 16} \ ^{13,14,15,30a} A_{16}^{\downarrow 17} \ ^{16} A_{17} \ A_{18} \ K_{19}^{\downarrow 20} \ ^{19,19a} P_{20}^{\downarrow 21,\downarrow 22} \ ^{20} P_{21}^{\downarrow 17a,\downarrow 19a} \ ^{121} A_{17a}^{\downarrow 18a} \ ^{17a} A_{18a}^{\downarrow 19a} \ ^{18a,21} K_{19a}^{\uparrow 20} \ ^{20} P_{22}^{\downarrow 23,\downarrow 38} \ ^{22} P_{23}^{\downarrow 24,\downarrow 31} \ ^{23} \varPhi_{24} \ ^{24} \varPhi_{25}^{\downarrow 26} \ ^{25} P_{26}^{\downarrow 27,\downarrow 29} \ ^{26a} A_{27a} \ K_{28a}^{\downarrow 33} \ ^{26a} A_{29a}^{\downarrow 23} \ ^{28,29} P_{30}^{\uparrow 3,\downarrow 23a} \ ^{23} A_{31} \ \varPhi_{32}^{\downarrow 25a} \ ^{32} \varPhi_{25a} \ P_{26a}^{\downarrow 27a,\downarrow 29a} \ ^{26a} A_{27a} \ K_{28a}^{\downarrow 33} \ ^{26a} K_{29a}^{\downarrow 33} \ ^{26a,29a,35} P_{33}^{\downarrow 34,\downarrow 36} \ ^{33} A_{34} \ K_{35}^{\uparrow 33} \ ^{33} A_{36} \ A_{37}^{30a} \ ^{37} P_{30a}^{\uparrow 16,\uparrow 23a} \ ^{22} P_{38}^{\downarrow 39,\downarrow 296} \ ^{38} A_{39} \ A_{40} \ A_{41}^{\uparrow 33} \ ^{38} K_{296}^{\uparrow 33} \ ^{23a} A_{4a} \ P_{546a,\downarrow 7a}^{\downarrow 5a} \ ^{4} A_{6a}^{\downarrow 7a} \ ^{5a,6a} A_{7a} \ A_{8a}^{\downarrow P236} \ ^{8a,11} P_{236a}^{\downarrow 16a,\downarrow P23a} \ ^{236} A_{16a}^{\downarrow 176} \ ^{16a} \ ^{4} A_{186} \ K_{196}^{\downarrow 20a} \ ^{196,19e} P_{20a}^{\downarrow 21a,\downarrow 31a} \ ^{20a} P_{21a}^{\downarrow 17e,\downarrow 19e} \ ^{21a} A_{17e}^{\downarrow 18e} \ ^{17e} A_{18e}^{\downarrow 19e} \ ^{18e,21a} K_{19e}^{\uparrow 20a} \ ^{20a} A_{31a} \ ^{4,256} \ ^{32a} A_{256} \ P_{266}^{\downarrow 276,\downarrow 29e} \ ^{266} A_{276} \ ^{4,23a} \ ^{236,30,30a,37a} P_{23a}^{\downarrow 42,\downarrow 3a} \ ^{23a} A_{42} \ A_{43} \ ^{43} A_{44}.$


Блок-схема алгоритма.

