ПРИНЯТИЕ РЕШЕНИЙ В СФЕРЕ УСЛУГ АВТОМОБИЛЬНЫХ СТОЯНОК И ПАРКОВОК С ИСПОЛЬЗОВАНИЕМ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Коротков Е.Н., Барышевский С.О.

Мелитопольский государственный университет имени А.С. Макаренко, Мелитополь, Россия

DECISION MAKING IN THE FIELD OF CAR PARKING AND PARKING SERVICES USING SIMULATION OF RANDOM VARIABLE

Korotkov E.N., Baryshevskyi S.O.

Makarenko Melitopol State University, Melitopol, Russia

В условиях рыночной экономики все более актуальным становится вопрос о поиске инструментов анализа и прогнозирования экономических процессов. Одним из способов принятия управленческих решений является использование методов имитационного моделирования.

Особенность имитационного моделирования в сфере услуг автомобильных стоянок и парковок заключается в том, что рынок этих услуг, как и рынок многих других товаров и услуг, характеризуется существованием большего количества потребителей, различающихся определенными предпочтениями и уровнем доходов. Основным показателем оценки деятельности автомобильных стоянок и парковок является загрузка фонда предоставляемых мест, который позволяет оценить использование фонда предоставляемых мест автомобильных стоянок и парковок, а также выявить периоды дефицита и профицита предоставляемых мест. Для прогноза спроса на услуги автомобильных стоянок и парковок применимо имитационное моделирование.

Имитационное моделирование проводится в тех случаях, когда исследователь имеет дело с такими математическими моделями, которые не позволяют заранее вычислить или предсказать результат. В этом случае для предсказания поведения реальной сложной системы необходимо провести эксперимент, имитация на модели при заданных исходных параметрах [1, с.125].

Имитационное моделирование можно представить, как обычные итерационные вычисления, выполняемые с помощью расчетных программ или табличного процессора; такие вычисления можно выполнить и без компьютера, с привлечением арифметических действий, вспомогательных таблиц [2, с.235].

Одним из направлений имитационного моделирования является моделирование случайной величины [3].

В данной работе мы предлагаем рассмотрение примера имитационного моделирования случайных величин в сфере услуг круглосуточных автомобильных стоянок (огороженных и охраняемых).

Охраняемые автомобильные стоянки организуются на свободной от застройки территории. Преимущество такого вида парковок заключается в том, что на них ведется наблюдение за транспортом и автомобиль находится под «под присмотром», но от природных факторов (дождь, снег, грязь, солнце, осадки вредных веществ из атмосферы и тому подобное) автомобиль не защищен [4].

Моделируется некоторая случайная величина. Сначала из опытных данных определяется количество появлений возможных значений этой величины в единицу времени. По частотам вычисляются вероятности, по значениям этих вероятностей — кумулятивные вероятности. Зная кумулятивные вероятности, устанавливаем соответствие между случайными числами и значениями случайной величины. Берем несколько случайных чисел из специальной таблицы, восстанавливаем по ним значения случайной величины и определяем нужные нам характеристики [3, с. 88].

Пример. Рассмотрим оценку загрузки автомобильной стоянки (45 мест). Известно количество мест, занятых в течении последних 100 суток (Таблица 1).

Занятость мест автомобильной стоянки в течении последних 100 суток. Таблица 1.

Число занятых мест в сутки	Частота				
45	16				
44	25				
43	18				
42	10				
41	8				
40	10				
39	5				
38	3				
37	4				
36	1				

.

.Таблица 2.

Число	Частота	Вероятность	Кумулятивная	Случайные	
занятых мест			вероятность	числа	
в сутки					
45	16	0,16	0,16	00-15	
44	25	0,25	0,41	16-40	
43	18	0,18	0,59	41-58	
42	10	0,1	0,69	57-68	
41	8	0,08	0,77	69-78	
40	10	0,1	0,87	77-86	
39	5	0,05	0,92	85-91	
38	3	0,03	0,95	92-94	
37	4	0,04	0,99	95-98	
36	1	0,01	1,00	99-99	

Поясним, как заполняется таблица.

Как заполнять первые 4 столбца вполне очевидно. Так как у чисел «Кумулятивная вероятность» после запятой меняются два знака, то случайные числа группируем по два. Последний столбец заполняется сверху вниз.

Берем числа после запятой из 1-й строки 4-го столбца. Это 16. Поэтому с 16 начнем вторую строку последнего столбца, а числом 16-1=15 завершим 1-ю строку. Начнем же 1-ю строку с 00.

Берем числа после запятой из 2-й стоки 4-го столбца. Это 41. Поэтому с 41 начнем 3-ю строку последнего столбца, а числом 41-1=40 завершаем 2-ю строку и так далее.

Полученная таблица используется следующим образом. Берем подряд из любой строки или любого столбца случайные числа из таблицы случайных чисел. Определяем, в какой интервал нашей таблицы они попадают. И находим соответствующие значения в 1-м столбце (Таблица 3).

Сутки	1	2	3	4	5	6	7	8	9	10
Случайное число	01	47	50	67	73	23	20	90	25	60
Число занятых мест в сутки	45	43	43	42	41	44	44	39	44	42

01 попадает в интервал 00-15, что соответствует 45 занятым местам, 47 попадает в интервал 41-58, что соответствует 43 занятым местам, и так далее.

Список литературы.

- 1) Антонов А.В. Системный анализ. Учеб. для вузов. М.: Высш.шк., 2004. 454 с.
- 2) Теория систем и системный анализ в управлении организациями: Справочник: Учеб. пособие / Под ред. В.Н. Волковой, и А.А. Емельянова. М.: Финансы и статистика, 2006. 848 с.: ил.
- 3) Просветов Г.И. Математические методы и модели в экономике: задачи и решения: Учебно-практическое пособие. – М.: Издательство «Альфа-Пресс», 2008. – 344 с.
- 4) Дуванова И.А. Автомобильные стоянки и парковки в мегаполисах / Строительство уникальных зданий и сооружений, 2015, №12 (39). С. 43-56.