РАЗМЕЩЕНИЕ, ПЕРЕСТАНОВКА И СОЧЕТАНИЕ БЕЗ ПОВТОРЕНИЯ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Туманов Н.Н.

Мелитопольский государственный университет имени А.С.Макаренко, Мелитополь, Россия

PLACEMENT, PERMUTATION AND COMBINATION WITHOUT REPETITION. EXAMPLES OF SOLVING PROBLEMS

Tumanov N.

Makarenko Melitopol State University, Melitopol, Russia

Ввеление

Комбинаторика — это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов.

Типичные задачи комбинаторики:

- определить количество комбинаторных конфигураций, соответствующих заданным правилам (в частности, доказать или опровергнуть их существование);
- найти практически пригодный алгоритм их полного построения;
- определить свойства заданного класса комбинаторных конфигураций.

Комбинаторика тесно связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей, теорией чисел и другими. Она применяется в самых различных областях знаний, например, в генетике, информатике, статистике, статистической физике, лингвистике.

Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются:

1 Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества.

- 2 Перестановкой из n элементов (например, чисел 1, 2, ... n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n .
- 3 Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений [1].

1. Размещение без повторения:

Задача 1.

В футбольной команде 11 человек. Сколькими способами можно выбрать: а) капитана и его ассистента; б) капитана, первого ассистента и второго ассистента?

Решение

- а) Капитаном можно выбрать любого из 11 футболистов. Ассистентом любого из 10 оставшихся. Поэтому капитана и ассистента можно выбрать $11 \cdot 10 = 110$ способами.
- б) Капитана и первого ассистента мы уже выбрали $11 \cdot 10$ способами. Для выбора второго ассистента остаётся 9 способов. Поэтому капитана, первого ассистента и второго ассистента можно выбрать $11 \cdot 10 \cdot 9 = 990$ способами.

В этой задаче мы фактически нашли число упорядоченных пар и упорядоченных троек, которые можно выбрать из 11-элементного множества. Теперь рассмотрим данный вопрос в общем виде.

Определение. Пусть имеется множество, содержащее n элементов. Произвольный упорядоченный набор, составленный из k различных элементов данного множества, называется размещением из n элементов по k элементов (или просто размещением из n по k).

Число размещений из n элементов по k элементов обозначается A_h^k . Это число упорядоченных наборов из k элементов (или число цепочек длины k), выбранных из n-элементного множества. Найдём, чему равно это число. Рассуждаем так же, как и в задаче про футболистов. Для выбора первого элемента цепочки имеется

n способов, для выбора второго элемента имеется n-1 способов, для выбора третьего элемента имеется n-2 способов и т. д. Для выбора последнего, k-го элемента цепочки имеется n-k+1 способов.

Следовательно:
$$A_n^k = n(n-1)(n-2) \dots (n-k+1)(1)$$

Данную формулу можно записать в более компактном виде, если правую часть умножить и разделить на (n-k)!:

$$A_n^k = \frac{n(n-1)(n-2) \dots (n-k+1)(n-k)!}{(n-k)!}$$

то есть:

$$A_n^k = \frac{n!}{(n-k)!} \tag{2}$$

2. Перестановка без повторения:

Перестановка есть простой частный случай размещения, однако настолько важный, что заслуживает отдельного рассмотрения.

Задача 2.

Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что цифры не должны повторяться?

Решение

Для выбора первой цифры имеется пять способов, для выбора второй — четыре, для выбора третьей — три, для выбора второй — два, и для выбора последней цифры остаётся один способ. Всего чисел получается $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! = 120$.

Задача 3.

Имеется n разноцветных шаров. Сколькими способами их можно выложить в ряд?

Решение

Первый шар можно выбрать n-1 способами и т. д. Для выбора последнего, n-го шара остаётся один способ. Всего получается

$$n \times (n-1) \times ... \times 2 \times 1 = n!$$

способов выложить наши n шаров в ряд.

Определение. Пусть имеется множество, содержащее n элементов. Произвольная цепочка длины n, составленная из всех элементов данного множества, называется перестановкой этого множества (или перестановкой n элементов). Иными словами, перестановка n элементов — это размещение из n по n. Число перестановок n-элементного множества обозначается P_n ; мы нашли это число в последней задаче (про разноцветные шары):

$$P_n = n!$$

3. Сочетание без повторения

Переходим к рассмотрению сочетаний. Вернёмся к нашей футбольной команде, в которой мы выбирали капитана и ассистента.

Задача. В футбольной команде 11 человек. Сколькими способами можно выбрать из них двух игроков для прохождения допинг-контроля?

Решение. На первый взгляд кажется, что ситуация аналогична выбору капитана и ассистента: первого человека выбираем 11 способами, второго — 10 способами, так что всего имеется 11 · 10 способов. Однако в данном случае это не так. В самом деле, пара «капитан и ассистент» является упорядоченной: выбрать Петю капитаном, а Васю ассистентом — это не то же самое, что выбрать Васю капитаном, а Петю ассистентом. С другой стороны, пара человек, отправленных на допинг-тест, является неупорядоченной:

отправить Петю и Васю на тест — это ровно то же самое, что отправить Васю и Петю на тест.

Соответственно, в данной задаче нас интересует именно число неупорядоченных пар футболистов, выбираемых из 11 человек.

Давайте представим себе, что неупорядоченная пара {Петя, Вася} как бы склеивается из двух упорядоченных пар (Петя, Вася) и (Вася, Петя). Иными словами, любые две упорядоченные пары, отличающиеся лишь порядком следования объектов, дают одну и ту же неупорядоченную пару. Следовательно, число неупорядоченных пар будет в два раза меньше числа

упорядоченных пар и окажется равны:

$$\frac{11*10}{2}$$

Таким образом, двух футболистов можно выбрать для допинг-контроля 55 способами.

Задача. Сколькими способами можно выбрать троих футболистов из 11 для прохождения допинг-контроля?

Решение. Произведение 11 · 10 · 9 (число способов выбора капитана, первого ассистента и второго ассистента) есть число упорядоченных троек футболистов. В данном же случае, как и в предыдущей задаче, порядок не важен, поэтому нам нужно найти число неупорядоченных троек футболистов, выбираемых из 11 человек.

В одну неупорядоченную тройку склеиваются те и только те упорядоченные тройки, которые отличаются лишь порядком следования элементов. Число таких троек равно числу перестановок трёх элементов, то есть 3! = 6. Например, в одну неупорядоченную тройку

склеиваются ровно шесть упорядоченных троек

(Вася, Коля, Петя), (Вася, Петя, Коля), (Коля, Вася, Петя),

(Коля, Петя, Вася), (Петя, Вася, Коля), (Петя, Коля, Вася).

Следовательно, число неупорядоченных троек в 3! раз меньше числа упорядоченных троек.

Соответственно, имеется

$$\frac{11*10*9}{2}$$

способов выбрать троих человек для допинг-контроля.

В последних двух задачах о футболистах, выбираемых на допинг-контроль, мы нашли число неупорядоченных пар и неупорядоченных троек, которые можно выбрать из 11-элементного множества. Теперь мы можем рассмотреть данный вопрос в общем виде.

Определение. Пусть имеется множество, содержащее n элементов. Произвольный неупорядоченный набор, состоящий из k различных элементов данного множества, называется сочетанием из n элементов по k элементов (или просто сочетанием из n по k).

Иными словами, сочетание из n элементов по k элементов — это просто k-элементное подмножество n-элементного множества.

Число сочетаний из n элементов по k элементов обозначается \mathcal{C}_n^k (читается «це из эн по ка»).

Это число неупорядоченных наборов из k элементов, выбранных из nэлементного множества

(то есть число k-элементных подмножеств n-элементного множества). Найдём, чему равно это число.

Число упорядоченных наборов из k элементов (то есть число цепочек длины k) есть число размещений A_n^k . Те и только те цепочки, которые отличаются лишь порядком следования

элементов, склеиваются в один неупорядоченный набор. Число таких цепочек равно числу перестановок k элементов, то есть k!. Следовательно, искомое число неупорядоченных наборов из k элементов будет в k! раз меньше числа цепочек длины k:

$$C_n^k = \frac{A_n^k}{k!}$$

Согласно формулам (1) или (2) имеем:

$$C_n^k = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

Теперь, зная, что такое число сочетаний, мы можем сразу сказать, что двух футболистов из одиннадцати для допинг-теста можно выбрать $C_{11}^2 = (11*10)/2!$ способами; аналогично, трёх футболистов из одиннадцати можно выбрать $C_{11}^3 = (11*10*9)/3!$ способами. [2]

1.1 Примеры решения задач с размещением без повторения:

Пример 1. Студенческая группа состоит из 25 человек. Нужно выбрать старосту, заместителя старосты и профорга. Сколькими способами это можно сделать, если каждый студент может занимать только одну должность.

Решение

Из множества, содержащего из 25 человек ($\mathbf{n} = 25$) нужно выбрать 3 человека ($\mathbf{k} = 3$), причем порядок, в котором они будут указаны, важен, так как они займут разные должности, т.е. каждый выбор представляет собой размещение без

повторений. Следовательно, количество способов равно числу размещений из 25 элементов по 3: $A_{25}^3 = 25 * 25 * 23 = 13800$

Пример 2. Сколькими способами можно переставить буквы слова «параллелизм» так, чтобы не менялся порядок гласных букв?

Решение

Выбираем 7 мест из 11 для согласных букв A_{11}^7 способами, на оставшиеся места ставим гласные буквы в нужном порядке.

Но так как буква «л» входит в слово 3 раза, то способы, получающиеся перестановкой мест для букв, «л» совпадают и поэтому различных способов в 3! раза меньше.

Окончательно получаем, что число способов, которыми можно переставить буквы слова «параллелизм» так, что бы не менялся порядок гласных букв, равно: $\frac{A_{11}^7}{3!} = 277200$. [2]

2.1 Примеры решения задач с перестановкой без повторений

Пример 1. Для дежурства на факультете с понедельника по субботу выделено 6 студентов из группы. Староста группы должен составить график дежурства. Сколькими способами он может это сделать?

Решение

График — это упорядоченный список из 6 человек (\mathbf{n} =6). Следовательно, количество способов равно числу перестановок 6 элементов: $\mathbf{P}_6 = 6! = 720$

Пример 2. Сколькими способами можно расставить 8 ладей, чтобы они не били друг друга?

Решение

При таком расположении на каждой горизонтали и каждой вертикали стоит по одной ладье.

Обозначим \boldsymbol{a}_1 номер занятого поля на первой горизонтали, \boldsymbol{a}_2 номер занятого поля на второй горизонтали, ..., \boldsymbol{a}_8 — номер занятого поля на восьмой горизонтали.

Тогда $(a_1, a_2, ..., a_8)$ — перестановка из чисел 1,2, ...,8, так как среди чисел $a_1, a_2, ..., a_8$ не может быть одинаковых, иначе две ладьи попадут на одну и ту же вертикаль.

Обратно, если $(a_1, a_2, ..., a_8)$ — некоторая перестановка из чисел 1,2, ...,8, то ей соответствует некоторое расположение ладей, при котором они не могут бить друг друга.

Таким образом, число способов расстановки 8 ладей, при которых они не могут бить друг друга, равно $P_8 = 8! = 1*2*...*8 = 40320$ [3]

3.1 Примеры решения задач с сочетанием без повторения

Пример 1. Трое ребят собрали 40 яблок. Сколькими способами они могут их разделить, если все яблоки считаются одинаковыми?

Решение

Добавим к 40 яблокам ещё 2 элемента, например, 2 камешка, если расположить эти 42 элемента в ряд, то эти 2 камешка разделят 40 яблок на 3 части (некоторые из частей при этом могут оказаться пустыми).

Следовательно, число способов раздела яблок равно числу способов выбора из 42 двух мест 2 мест для камешков, т.е. числу сочетаний из 42 элементов по 2:

$$C_{24}^2 = \frac{42!}{2! * 40!} = \frac{41 * 42}{1 * 2} = 41 * 21 = 861$$

Пример 2. Из лаборатории в которой работают 20 человек, 5 сотрудников должны уехать в командировку. Сколько может быть различных составов этой группы, если начальник лаборатории, его заместитель и главный инженер одновременно уезжать не должны?

Решение

5 человек для поездки в командировку из 20 сотрудников лаборатории можно выбрать C_{20}^5 способами. Из этого числа нужно исключить способы, у которых в

число выбранных одновременно попали начальник, его заместитель и главный инженер.

Если начальник, заместитель и главный инженер попали в количество выбранных, то ещё 2 человека будут выбираться из 17 сотрудников C_{17}^2 способами, эти способы нужно исключить из всех возможных способов. Окончательно получаем, что число различных составов группы, направленную в командировку, равно: $C_{20}^5 - C_{17}^2 = \frac{20!}{5!*15!} - \frac{17!}{2!*15!} = 15368$ [3]

Список литературы

- 1) Комбинаторика: https://ru.wikipedia.org/wiki/Комбинаторика
- 2) Размещения, перестановки и сочетания: https://mathus.ru/math/apc.pdf
- 3) Комбинаторика Г.Г.Кравченко, О.В.Иванисова, И.В.Сухан. Краснодар 2006 год